

State of Lung Cancer Research Lung Cancer Research Foundation Scientific Symposium

Karen Reckamp, MD, MS

Director, Division of Medical Oncology Associate Director, Clinical Research Cedars Sinai Cancer

cedars-sinai.org

Disclosures

Consultant

Amgen; AstraZeneca; Boehringer Ingelheim; Blueprint; Calithera; Euclises; Genentech; Guardant; Janssen; Lilly; Merck KGA; Precision Health; Seattle Genetics; Takeda; Tesaro

Research support (to prior institution)

AbbVie, Acea, Adaptimmune, Boehringer Ingelheim, Bristol Myers Squibb, Genentech, GlaxoSmithKline, Guardant, Janssen, Loxo Oncology, Seattle Genetics, Takeda, Xcovery, Zeno

Outline

- Recent advances
 - Moving targeted therapied and IO into the curative setting
 - Lung cancer screening
 - Growing number of targeted therapies leading to improved survival
 - Immunotherapy improving long term outcomes
- Broader challenges that lung cancer research currently faces and potential changes
- How we can contribute to promote a better future and create a more collaborative scientific environment

Cedars Sinai

20 years of progress on the road less traveled

RESEARCH FOUNDATION

2020—survival improvements for advanced NSCLC

2018—PD-L1 approval for consolidation post chemoradiation

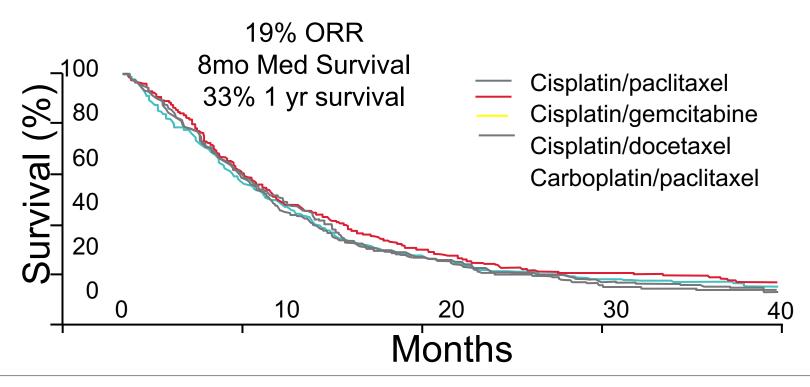
2015—PD-1 approval

2019—PD-L1

approval for SCLC

2011—crizotinib accelerated approval

2004—Adjuvant therapy


2004—identification of EGFR mutations

2000—ECOG 1594

Where we started

Schiller et al. N Engl J Med. 2002;346:92.

Eternal optimism—hope

VOL. 350 NO. 21

The NEW ENGLAND JOURNAL of MEDICINE

Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib

MAY 20 2004

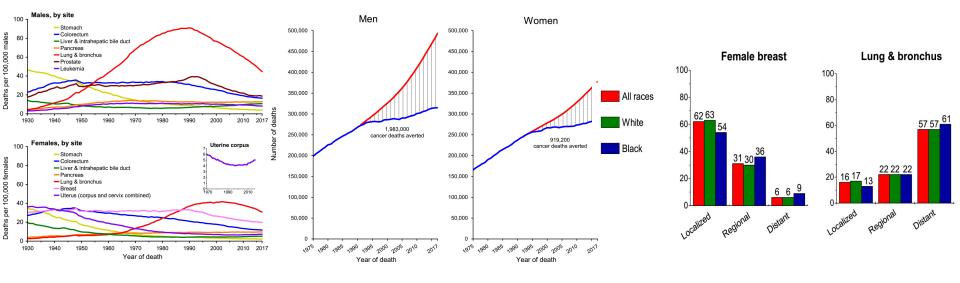
Thomas J. Lynch, M.D., Daphne W. Bell, Ph.D., Raffaella Sordella, Ph.D., Sarada Gurubhagavatula, M.D., Ross A. Okimoto, B.S., Brian W. Brannigan, B.A., Patricia L. Harris, M.S., Sara M. Haserlat, B.A., Jeffrey G. Supko, Ph.D., Frank G. Haluska, M.D., Ph.D., David N. Louis, M.D., David C. Christiani, M.D., Jeff Settleman, Ph.D., and Daniel A. Haber, M.D., Ph.D.

SCIENCE VOL 304, 4 June 2004

ESTABLISHED IN 1912

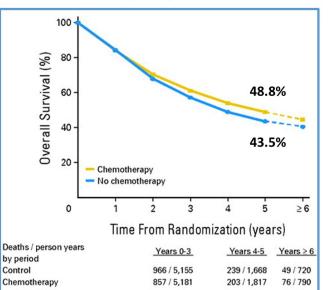
EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy

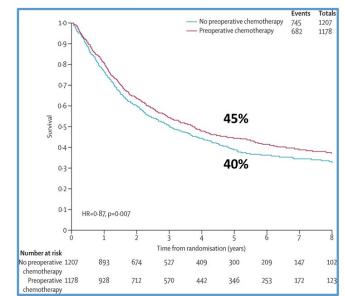
J. Guillermo Paez,^{1,2*} Pasi A. Jänne,^{1,2*} Jeffrey C. Lee,^{1,3*} Sean Tracy,¹ Heidi Greulich,^{1,2} Stacey Gabriel,⁴ Paula Herman,¹ Frederic J. Kaye,⁵ Neal Lindeman,⁶ Titus J. Boggon,^{1,3} Katsuhiko Naoki,¹ Hidefumi Sasaki,⁷ Yoshitaka Fujii,⁷ Michael J. Eck,^{1,3} William R. Sellers,^{1,2,4}† Bruce E. Johnson,^{1,2}† Matthew Meyerson^{1,3,4}†


dars Sinai

hope noun 1a: desire accompanied by expectation of or belief in fulfillment also: expectation of fulfillment or success

Decrease in lung cancer mortality


"...declines accelerated for lung cancer mortality, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017."

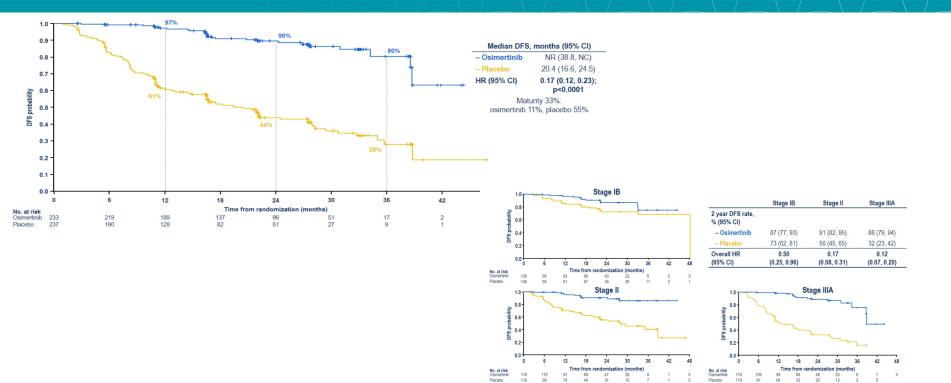


LUNG CANCER

Adjuvant and neoadjuvant chemotherapy improves 5-yr survival in early stage NSCLC

Post-Op Adjuvant CT

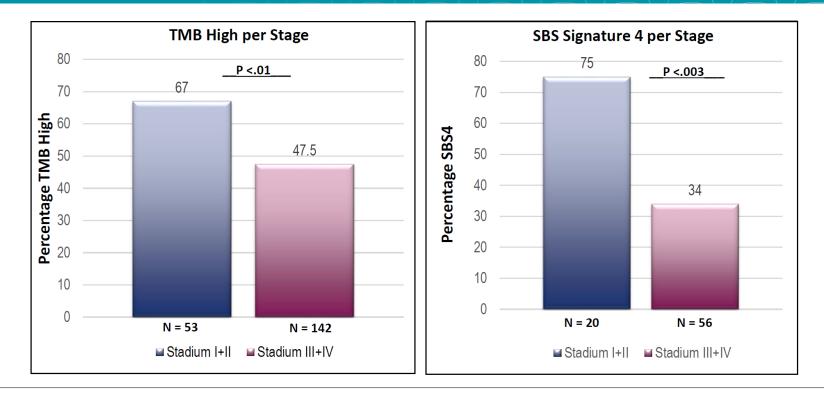
Pre-Op Neoadjuvant CT


LUNG CANCER

NSCLC Meta-analyses Collaborative Group. Lancet 2010;375:1267-77

Pignon J-P, et al. J Clin Oncol 2008;26:3552-9

ADAURA—adjuvant osimertinib improves DFS

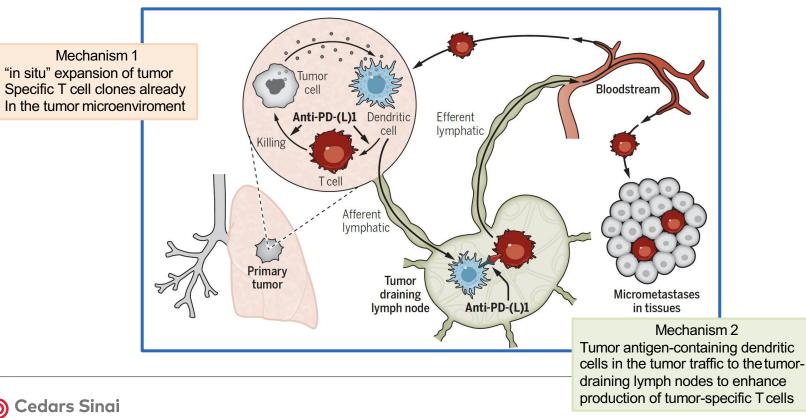


Herbst et al ASCO 2020; Wu et al NEJM 2020

LUNG CANCER

TMB by stage in NSCLC

Ongoing Phase III Clinical Trials With Adjuvant Immune Checkpoint Inhibitors


Trial	NCT	Drug	Stage	Target Accrual	Phase	End Point
PEARLS	NCT02504372	S with or without CT \rightarrow pembrolizumab vs. placebo	IB–IIIA	1080	Ш	DFS
BR31	NCT02273375	S with or without CT → durvalumab vs placebo	IB–IIIA	1360	ш	DFS, DFS in PD-L1 positive
ANVIL	NCT02595944	S with or without CT \rightarrow nivolumab vs. observation	IB–IIIA	903	111	DFS, OS
ALCHEMIST CHEMO I-O	NCT04267848	$S \rightarrow CT >$ observation vs CT > pembrolizumab vs. CT + pembrolizumab > pembrolizumab	IB–IIIA	1263	ш	DFS, OS
IMpower010	NCT02486718	S with CT \rightarrow atezolizumab vs best supportive care	IB–IIIA	1280	111	DFS

CT, adjuvant chemotherapy; DFS, disease-free survival; NCT, National Clinical Trial; OS, overall survival; PD-L1, programmed death-ligand 1; S, surgery.

Mechanisms of enhancing a systemic immune response with neoadjuvant IC inhibitors

Topilian SL, et al. Science Jan 2020

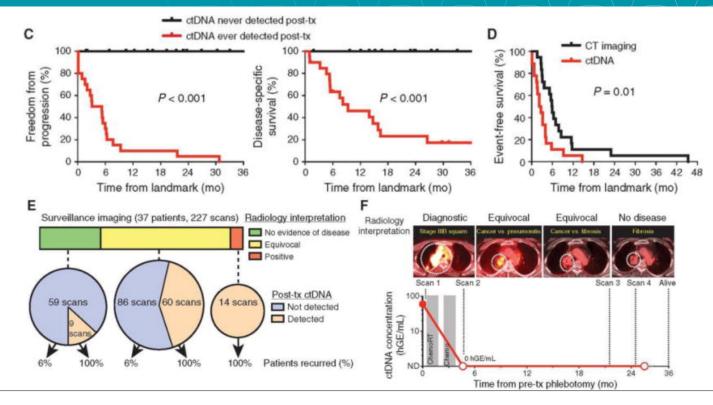
Summary of Results of Trials Using Neoadjuvant Immunotherapy in Patients With Resectable NSCLC

Study	Stage	Sample Size	Neoadjuvant Immunotherapy	No. of Cycles	Failure to Surgery After Neoadjuvant, %	Primary End Point	MPR, %
Forde et al.2018	I–IIIA	22	Nivolumab	2	0	Safety and feasibility	45
Kwiatkowski et al.2019	Ib–IIIB	101	Atezolizumab	2	11	MPR	19
Cascone et al.	I–IIIA	44	Nivolumab vs. nivolumab + ipilimumab	3 ª	11	MPR	17 vs. 33 (ITT) 19 vs. 44 (evaluable)
Li et al.2019	IA–IIIB	40	Sintilimab	2	7.5	Safety	40.5
Shu et al.2018	IB–IIIA	14	Atezolizumab + carboplatin + nab- paclitaxel	4	21.4	MPR	50
Provencio et al.2019	IIIA	46 ^b	Nivolumab + carboplatin + paclitaxel	3	0	PFS at 24 mo	83

ITT, intention-to-treat; MPR, major pathologic response; PFS, progression-free survival. *Three cycles of nivolumab with or without one dose of ipilimumab.

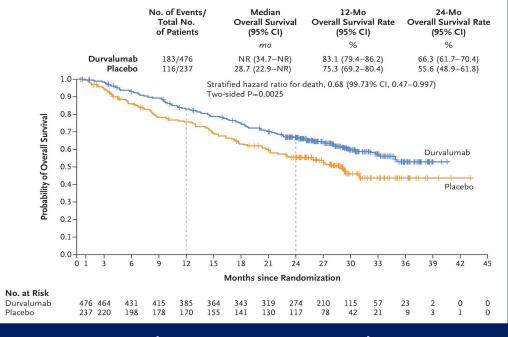
^b Preliminary data of 41 patients.

Ongoing Clinical Trials With Neoadjuvant Immune Checkpoint Inhibitors With or Without Chemotherapy


Trial	NCT	Drug	Stage	Target Accrual	Phase	End Point
MK3475-223	NCT02938624	Pembrolizumab different dose/regimens \rightarrow S	I—II	28	I	Toxicity, MPR
TOP 1501	NCT02818920	Pembrolizumab (200 mg) × 2 cycles \rightarrow S \rightarrow pembrolizumab (200 mg) × 4 cycles	IB–IIIA	32	II	Surgical feasibility
PRICNEPS	NCT02994576	Atezolizumab (1200 mg) × 1 cycle \rightarrow S	IB–IIIA (no N2)	60	II	Toxicity
SAKK 16/14	NCT02572843	CT × 3 \rightarrow durvalumab (750 mg) × 2 cycles \rightarrow S \rightarrow durvalumab (750 mg) × 1 y	IIIA (N2)	68	II	EFS
IONESCO	NCT03030131	Durvalumab (750 mg) Q2W × 3 cycles \rightarrow S	IB–II	81	П	R0 resection
Columbia University	NCT02716038	CT + atezolizumab (1200 mg) × 4 cycles \rightarrow S	IB–IIIA	30	II	MPR
KEYNOTE 617	NCT03425643	CT + pembrolizumab (200 mg)/placebo × 4 cycles \rightarrow S \rightarrow pembrolizumab/placebo × 13 cycles	II–IIIB (T3-4N2)	786	ш	EFS, OS
CheckMate 816ª	NCT02998528	CT + nivolumab (360 mg) × 3 cycles \rightarrow S vs. CT × 3 cycles \rightarrow S	IB–IIIA	350	Ш	EFS, pCR
IMpower 030	NCT03456063	CT + atezolizumab (1200 mg)/placebo × 4 cycles \rightarrow S \rightarrow atezolizumab/placebo × 16 cycles	II–IIIB (cT3N2)	374	111	MPR, EFS
AEGEAN	NCT03800134	CT + durvalumab (1500 mg)/placebo × 3 cycles \rightarrow S \rightarrow durvalumab/placebo Q4W × 12 cycles	IIA–IIIB	300	Ш	MPR

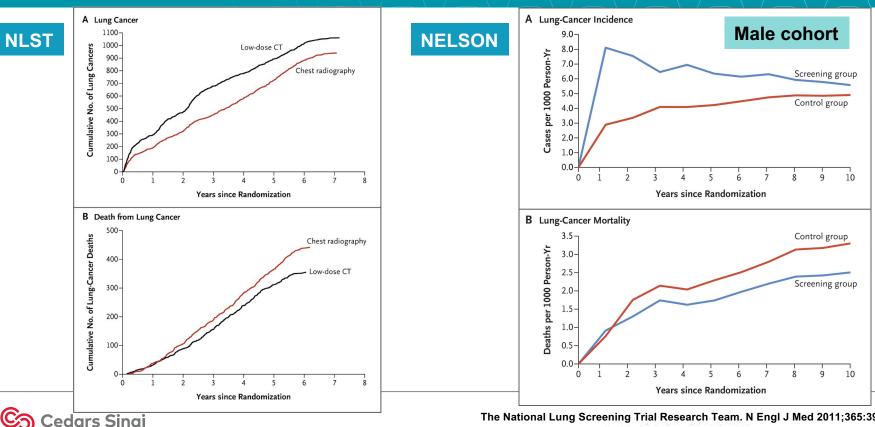
CT, chemotherapy; EFS, event-free survival; MPR, major pathologic response; NCT, National Clinical Trial; OS, overall survival; pCR, pathologic complete response; Q4W, every 4 weeks; S, surgery. *The third arm of the trial, nivolumab plus inilimumab, was withdrawn after results from NADIM trial.

Analysis of ctDNA for posttreatment surveillance



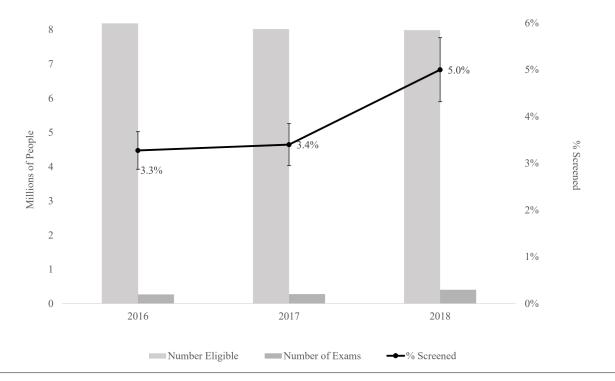
Chaudhuri AA et al Cancer Discov 2018

Pacific trial—durvalumab consolidation following chemoradiation


4 yr OS update ESMO September 2020 49.6% vs. 36.5%, favoring durvalumab

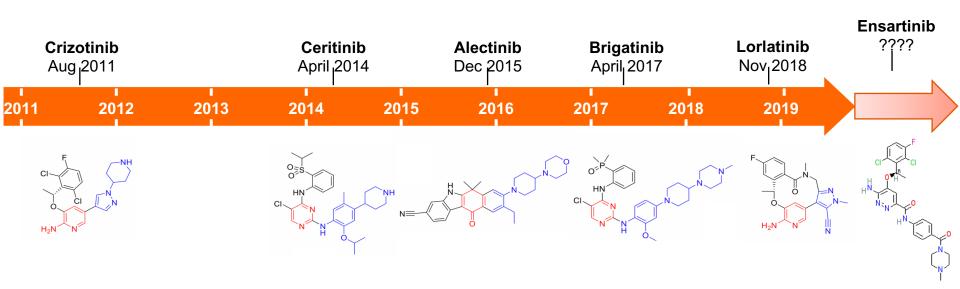
SJ Antonia et al. N Engl J Med 2018. DOI: 10.1056/NEJMoa1809697

NLST and NELSON Lung Cancer Incidence and Mortality



The National Lung Screening Trial Research Team. N Engl J Med 2011;365:395-409 HJ de Koning et al. N Engl J Med 2020. DOI: 10.1056/NEJMoa1911793

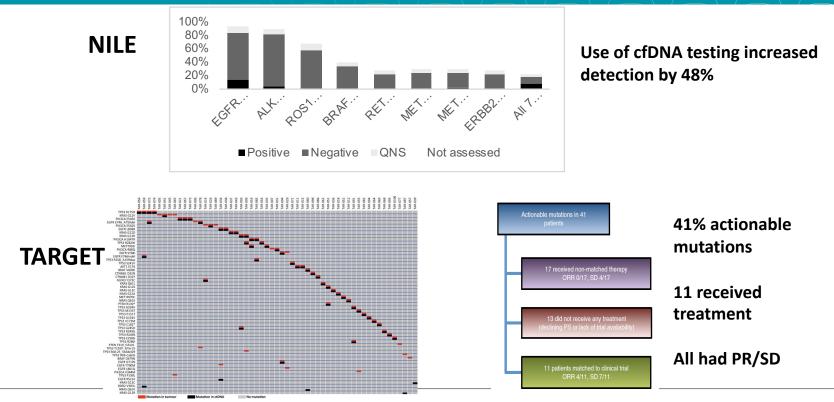
Lung cancer screening misses the mark



Fedewa SA et al. JNCI 2020

Oncogene	Mutation prevalence	Therapy	Predicted response rate
EGFR	Asians 30-40%/ Caucasian 10-20%	EGFR TKIs (most mutations)/pan-HER inhibitors	Erlotinib 60-80% Gefitinib 70% Afatinib 60% Dacomitinib 75% Or tinib 80%/ 50-60% (T790M)
ALK	1-7%	ALK inhibitors/HSP90 inhibitors	50-60% 7% % %
ROS1	1.7%, higher in A	NON.	otinib 60-70%; Ceritinib 60% Lorlatinib 62%; Entrectinib 77%
NTRK		15	Larotrectinib 76% Entrectinib 70%
RET	1.7% EGFR	RET inhibitors/ multitargeted TKI	Selpercatinib 60-80% Pralsetinib 60-70% Cabozantinib 40%;Vandetinib 20%
BRAF	2%	BRAF/MEK inhibitors	Dabrafenib 30% Dabraf/trametinib 60%
MET	4%	MET inhibitors/ multitargeted TKI	Capmatinib 60% Tepotinib/Savolitinib ~50%; Crizotinib 25%
HER2	2%	Trastuzumab; pan-HER inhibitors	Trastuzumab Deruxtecan 60% Dacomitinib 12% Ado-trastuzumab 20%; TDM-1 44%
KRAS G12C	9%	KRAS G12C inhibitors SHP inhibitors	AMG 510 35%; MRTX 849 45%, LY3499446; JNJ-74699157, others

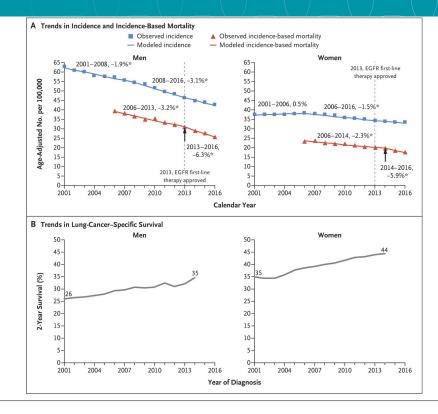
Timeline of FDA Accelerated Approvals of Small Molecule Tyrosine Kinase Inhibitors Targeting ALK



Adapted from A Shaw WCLC 2019

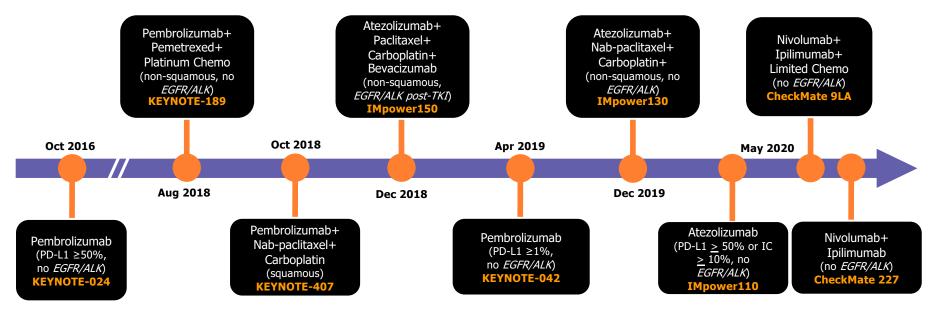
RESEARCH

Liquid biopsy can facilitate treatment with targeted therapy



Cedars Sinai

Leighl NB et al Clin Cancer Res 2019; Rothwell DG et al Nat Med 2019

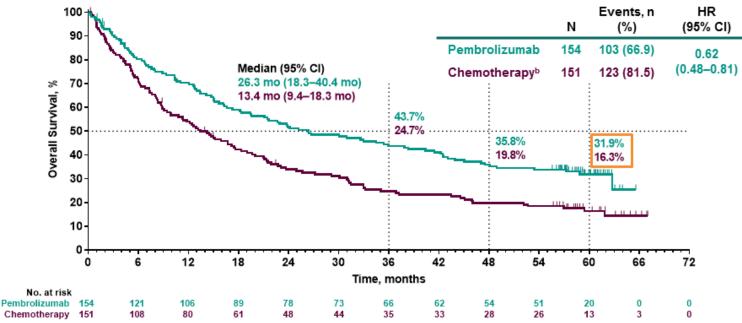

Decrease in incidence-based NSCLC mortality—due to targeted therapy

N Howlader et al. N Engl J Med 2020;383:640-649.

FDA First-line Approvals for Immunotherapy in Stage IV NSCLC

8 randomized trials have demonstrated efficacy with ICI + concurrent chemotherapy in the first-line setting in patients <u>without an EGFR- or ALK-positive tumor</u> (KEYNOTE-021G, -189, -407, IMpower130, -131, -132, Checkmate-9LA; IMpower150 allowed EGFR/ALK post-TKI).

3 randomized trials have demonstrated that ICI are appropriate as first-line treatment for selected patients based on tumor PD-L1 expression level and <u>no EGFR- or</u> <u>ALK-driven alteration</u> (KEYNOTE-024, -042 and IMpower110).

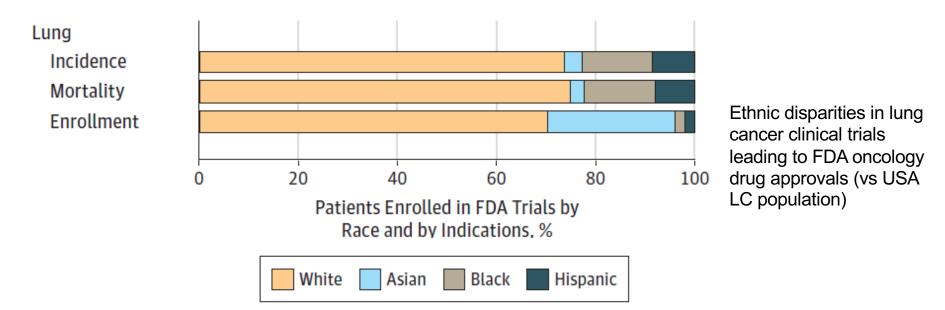


Slide courtesy of Mark Socinski, MD.

RESEARCH

Keynote-024—Pembrolizumab frontline overall survival

ITT population.


Effective crossover rate from chemotherapy to anti-PD-(L)1 therapy, 66.0% (99 patients in total crossed over to anti-PD-[L]1 therapy: 83 patients crossed over to pembrolizumab during the study, and 16 patients received subsequent anti-PD-[L]1 therapy outside of crossover, patients may have received >1 subsequent anti-PD-[L]1 therapy). Data cutoff: June 1, 2020.

Brahmer J et al ESMO 2020

Lung cancer trial enrollment

Courtesy of Janet Freeman-Daily, The ROS1ders, USA, @JFreemanDaily

Cedars Sinai

Continuing on the road less traveled

The Road Not Taken—Robert Frost

Two roads diverged in a yellow wood, And sorry I could not travel both And be one traveler, long I stood And looked down one as far as I could To where it bent in the undergrowth;

Then took the other, just as fair, And having perhaps the better claim, Because it was grassy and wanted wear; Though as for that the passing there Had worn them really about the same,

And both that morning equally lay In leaves, no step had trodden black. Oh, I kept the first for another day! Yet knowing how way leads on to way, I doubted if I should ever come back.

I shall be telling this with a sigh Somewhere ages and ages hence: Two roads diverged in a wood, and I— I took the one less traveled by, And that has made all the difference.

Increased lung cancer cures

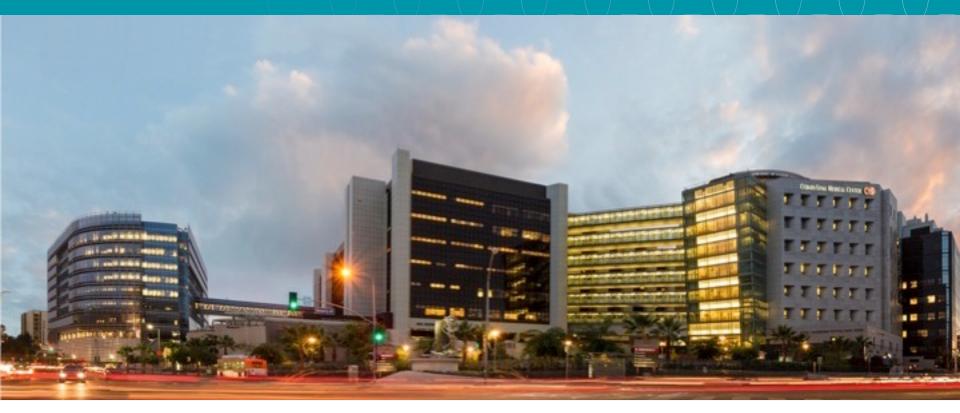
Established lung cancer survivorship programs

Improved treatments for SCLC

Enhanced inclusion on clinical trials to meet the needs of all

> Artificial intelligence to improve diagnosis

> > Immunotherapy for early-stage disease


Lung cancer screening standard per guidelines, and increased access

Use of ctDNA to determine recurrence risk

Predictive biomarkers for immunotherapy

Thank you!

